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Abstract

The initial solidi®cation problem of a two-dimensional liquid metal ®lm ¯ow over a heat extracting moving
boundary is studied. Analytical solutions in the limit of large Peclet numbers are found. It is shown that the point

of initial solidi®cation depends on the Peclet number, the Biot number and the superheat. The initial growth of the
solidi®ed phase is found to have a quadratic dependence of the distance from the point of initial solidi®cation. The
results are applicable to continuous strip casters. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The knowledge of solidi®cation rates is of great im-

portance in the ®eld of casting technology. Many
attempts have been made to derive exact and approxi-

mate mathematical models to simulate the solidi®ca-

tion processes of metals. The far most studied case to
date is that of unidirectional solidi®cation. Exact ana-

lytic solutions are available for the limiting cases of en-

gineering interest where heat ¯ow is one-dimensional,
mold±metal interface resistance is negligible, and the

mold is either held at constant temperature or is very

thick [1]. Approximate analytical solutions incorporat-
ing the e�ect of gaseous gaps generated at the interface

between the solidi®ed metal and the mold is presented

by Davey [2].

The analytical treatment of the directional solidi®ca-

tion problem appearing in connection with horizontal-

belt-strip casting (HBSC) and planar-¯ow casters
(PFC) have only recently received attention, see LoÈ fg-
ren and AÊ kerstedt [3], Carpenter and Steen [4] and

Carpenter [5]. The liquid metal is here directed onto a
conveyor belt or a spinning chill-wheel by a nozzle. A
thin (1±15 mm, HBSC) (0.1±1 mm, PFC) solidi®ed

strip of aluminium or steel is then produced. Steen and
Karcher [6] have recently reviewed the PFC technique.
These castings are characterised by an approximately

parallel ®lm ¯ow over a heat extracting moving bound-
ary. At some distance downstream, the superheated
melt reaches fusion temperature and a time indepen-
dent solidi®cation front emerges. Except from a small

region close to the feeding point, the heat and ¯uid
¯ow are only weakly coupled and interacts only
through the shape of the solidi®cation front.

This paper considers the initial solidi®cation prob-
lem of continuous strip casters of the type where the
liquid metal ¯ow is two-dimensional and approxi-

mately parallel to the moving boundary. In Section 2,
we analyse the initial heat problem of a superheated
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liquid metal ®lm ¯ow with a free surface and calculate
the point of initial solidi®cation. In Section 3, the in-
itial solidi®cation problem is considered. Conclusive

remarks are give in Section 4.

2. The initial heat ¯ow problem

Consider a two-dimensional continuous strip caster.

Let the melt be a superheated pure metal with a free
surface. In the region adjacent to the feeding point,
both the temperature and the ®lm ¯ow is homogenous

apart from thin boundary layers close to the moving
boundary. In order to approximate the real problem,
we may assume a slightly modi®ed problem by neglect-

ing the initially thin boundary layers generated within
the feeding region, see Fig. 1. Furthermore, assuming
the thermal boundary layer to be small with respect to

®lm thickness, at the point of initial solidi®cation,
makes it possible to treat the liquid layer as semi-in®-
nite in a ®rst-order approximation.

It is convenient to introduce dimensionless variables
by referring all lengths and velocities to the ®lm thick-
ness (a ) and the main horizontal velocity (U ). The
dimensionless temperature is de®ned as

yl � Tl ÿ T0

Tf ÿ T0
, �1�

where Tf is the fusion temperature and T0 is some

reference temperature of the heat sink. Then, in Car-
tesian co-ordinates, the dimensionless heat equation is
given by
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Nomenclature

a thickness of the
liquid metal ®lm ¯ow
(m)

Bil� ha

kl

, Bis � ha

ks

the liquid and solid
Biot numbers

c speci®c heat of solid

metal (J/m3 K)
h Newtonian heat

transfer coe�cient

(W/m3 K)
Pel�Ua

al

, Pes � Va

as

the liquid and solid
Peclet numbers

Re � Ua
�

n Reynolds number

St � c�Tf ÿ T0�
�
Dhf Stefan number

�s� s�

a
, s � Bil �s, S � Bis �s dimensionless thick-

ness of the solidi®ed

phase
T temperature ®eld (K)
T0 some reference tem-

perature of the heat
sink (K)

Tf fusion temperature

(K)
U main ®lm velocity

(m/s)
V the velocity of the

moving boundary (m/
s)

x� horizontal co-ordi-

nate (m)
�x� x�

a
, x � Bi 2l

Pel

�x dimensionless hori-
zontal co-ordinates

�xs dimensionless dis-
tance to the point of
initial solidi®cation

y� vertical co-ordinate
(m)

�y� y�

a
, y � Bil �y, Y � Bis �y dimensionless vertical

co-ordinates
�z� �xÿ �xs, z � Bi 2l

Pel

�z, Z � Bi 2s
Pes

dimensionless trans-
lated horizontal co-

ordinates

Greek symbols
al, as thermal di�usivity of

liquid and solid metal
(m2/s)

D � DT
Tf ÿ T0

dimensionless super-

heat
Dhf latent heat of fusion

(J/m3)

DT superheat tempera-
ture above fusion
temperature (K)

G Gibbs±Thomson
coe�cient (m K)

Z � yÿ s�z� dimensionless trans-
lated vertical co-ordi-

nate
kl, ks thermal conductivity

of liquid and solid

metal (W/m K)
y � Tÿ T0

Tf ÿ T0
dimensionless tem-
perature ®eld
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where Pel � aU=al is the liquid Peclet number and u
and v are the horizontal and vertical velocities. See
Table 1 for a closer view of the governing equations of
this paper.

The approximate boundary conditions are

yl�0, �y� � 1� D, �3�

yl� �x, �y41�41� D, �4�

@yl

@ �y

����
�y�0
� Bilyl� �x, 0�, �5�

where D� 1 is the dimensionless superheat and Bil �

ha=kl is the liquid Biot number, assuming a constant
Newtonian heat transfer coe�cient h at the heat
extracting boundary.
The condition at the point of initial solidi®cation is

yl� �xs, 0� � 1, �6�

neglecting curvature e�ects of the solidifying interface,
which is valid whenever d 2 �s=d �x 2 � a�Tf ÿT0�=G: This
assumption is validated in Section 3.2.
Searching for solutions in the limit of large Peclet

numbers, we need to express the mathematical problem

with derivatives of O(1). An obvious scaling of the ver-
tical co-ordinate is y � Bil �y found by observing Eq.
(5). Let a new horizontal co-ordinate be x �
�x=d�Bil, Pel�: Inserting these new co-ordinates into Eq.

(2) yields

lim
Pel41

(
Pel

Bi 2l

u

d
@yl

@x
� Pel

Bil
v
@yl

@y
ÿ 1

Bi 2l d
2

@ 2yl

@x 2

)
� @ 2yl

@y 2
:

�7�
Knowing that u � O�1� and v � O�Reÿ1=2� from the
theory of boundary layer ¯ows [7], we see that the sec-

ond term of the l.h.s. is negligible whenever Bil=Pel �
Reÿ1=2: This means that the boundary layer thickness
of the velocity ®eld is very much smaller than that of

the temperature ®eld. The velocity ®eld can thereby, in
this limit, be treated as homogenous. Without loss of
generality, we may choose d � Pel=Bi

2
l as Pel41,

yielding the appropriate horizontal co-ordinate x �
Bi 2l �x=Pel: The third term of the l.h.s is therefore of the
order O�Bi 2l =Pe 2l � and negligible in a ®rst approxi-
mation whenever Bi 2l =Pe

2
l � 1: Hence, the sought sol-

ution is therefore restricted by Bil=Pel � Reÿ1=2 and
�Bil=Pel� 2 � 1:
This is a fair assumption for today's strip casters

having Biot numbers ranging from 1 to about 1000,
with typical Reynolds numbers of 0104 and Peclet
numbers of 0100 for liquid aluminium and 01000 for

liquid steel.
The lowest order approximation with the new co-

ordinates is then given by

Fig. 1. Liquid metal ®lm ¯ow over a heat extracting moving boundary.

Table 1

Governing equations and boundary conditions

The heat equation

u�
@Tl

@x �
� v�

@Tl

@y�
� al

(
@ 2Tl

@x � 2
� @

2Tl

@y� 2

)
�liquidphase�

V
@Ts

@x �
� as

(
@ 2Ts

@x � 2
� @

2Ts

@y�2

)
�solidphase�

Newton cooling at the moving boundary

kl

@Tl

@y�

����
y��0
� h�Tl�x �, 0� ÿ T0 � �liquid �

ks

@Ts

@y�

����
y��0
� h�Ts�x �, 0� ÿ T0 � �solid �

The temperature at the solidifying interface
Tl�x �, s� � � Ts�x �, s� � � Tf ÿ Rÿ1G

Heat balance at the solidifying interface

Ãn � �ksr�Ts ÿ klr�Tl � � DhfV
ds�

dx �
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@yl

@x
� @ 2yl

@y 2
for x, yr0, �8�

with boundary conditions

yl�0, y� � 1� D, �9�

@yl

@y

����
y�0
� yl�x, 0�, �10�

yl�x, y41�41� D, �11�

and the condition at the point of initial solidi®cation

yl�x s, 0� � 1: �12�
The solution of the temperature ®eld is found, using
the Laplace transform in the x-direction, to be

yl�x, y� � �1� D�
�

erf

�
y

2
���
x
p

�
� ex�y erfc

� ���
x
p

� y

2
���
x
p

��
, �13�

which is self consistent for x� 1

2
�Bil
Pel

� 2, found by
insertion into Eq. (7).
The distance to the point of initial solidi®cation is

now found using Eq. (12), giving

x s � p
4
D 2 or �xs � p

4

Pel

Bi 2l
D 2 valid for

����
2

p

r
Bil
Pel

� D� 1:

�14�

3. The initial solidi®cation problem

As the liquid metal starts to solidify, the heat ¯ow

becomes a coupled problem. The latent heat generated
at the solidifying interface is extracted through a solid
state, with thermal properties di�erent from that of the

liquid state. In order to determine the initial growth of
the solid state, we study the heat problem in each
phase separately and use the heat ¯ux balance at the
solidifying interface Eq. (15) as a solvability condition.

Let �s be the dimensionless thickness, in units of a, of
the solidi®ed phase and assume weakly inclined solidi-
®cation fronts. The dimensionless heat balance is then

written as

1

Bis

@ys

@ �y

����
�y��s

ÿ 1

Bil

@yl

@ �y

����
�y� �s

� Pes

StBis

d�s

d �z
, �z � �xÿ �xs: �15�

This assumption is validated by the results in Section
3.2.

3.1. The liquid metal heat ¯ux at the solidifying

interface

In this section, we seek the distribution of the liquid

metal heat ¯ux at the solidifying interface close to the
point of initial solidi®cation. The method of solution is
to transform the problem so that the power of Fourier

analysis is applicable.
Introduce the new co-ordinates

z � xÿ x s and Z � yÿ s�z�, �16�
where s � Bil �s: Assume that ds=dz� 1 in the limit of
small z and large Peclet numbers. This is validated
later in Section 3.2. It is easily seen that the form of

the heat equation (8) remains with the new set of co-
ordinates. Then, by introducing the function

Y � yÿ 1 for Zr0, �17�
and assuming that Y�z, Z� � ÿY�z, ÿZ� in order to
ensure the boundary condition Y � 0 �y � 1� at Z � 0,
we have generated the problem

@Y
@z
� @ 2Y
@Z 2

; ÿ1 < Z <1, zr0, �18�

with the initial temperature distribution

Y�0, Z� � Z
jZj

(
�1� D�

"
erf

� jZj
D

���
p
p

�

� e
p
4D

2�jZjerfc

 
D

���
p
p
2
� jZj

D
���
p
p

!#
ÿ 1

)
, �19�

found from Eqs. (13) and (14). The solution of Eqs.
(18) and (19) is given by

Y�z, Z� � 1��������
4pz
p

�1
ÿ1

Y
ÿ
0, Z 0

�
eÿ
�
�ZÿZ 0 � 2

�
=4z dZ 0, �20�

see [8]. Then, for weakly inclined solidi®cation fronts,

the heat ¯ux is

@yl

@y

����
y�s�z�
�@Y
@Z

����
Z�0

� 1

4
���
p
p

z3=2

�1
ÿ1

Z 0Y
ÿ
0, Z 0

�
eÿZ

0 2=4z dZ 0

�symmetry 1

2
���
p
p

z3=2

�1
0

Z 0Y
ÿ
0, Z 0

�
eÿZ

0 2=4z dZ 0: �21�

Close to the point of initial solidi®cation, z40�, the
exponential term of the integrand rapidly goes to zero
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even for small Z 0: This makes it possible to approxi-
mate the initial distribution (19) by its Taylor expan-

sion, given by

Y�0, Z� � Z�
�
1ÿ 2

p
1� D
D

��
Z 2

2
� Z3

6

�
�O

ÿ
Z4
�
; Zr0:

�22�

Inserting Eq. (22) into Eq. (21) gives the heat ¯ux dis-

tribution

1

Bil

@yl

@ �y

����
�y��s� �z�
� @yl

@y

����
y�s�z�
� 1�

�
1ÿ 2

p
1� D
D

�
z

�O�z 2 �11ÿ 2

pD
z � 1ÿ 2

pD
Bi 2l
Pel

�z:

�23�

Now, knowing the heat ¯ux from the liquid makes us

ready to investigate the heat ¯ow problem in the solid
phase and to see if our assumption of a weakly
inclined initial solidi®cation front is appropriate.

3.2. The heat problem in the initially thin solid phase

In this section, we solve the heat ¯ow problem for
the initially thin solidi®ed phase, assuming a weakly
inclined solidi®cation front. The dimensionless heat
¯ow problem for the solid phase is therefore formu-

lated as

@ys

@ �z
� 1

Pes

(
@ 2ys

@ �z 2
� @

2ys

@ �y 2

)
, �24�

with the boundary conditions

@ys

@ �y

����
�y�0
� Bisys� �z, 0�, �25�

ys� �z, �s� � 1, �26�
and the heat balance at the solidifying interface

1

Bis

@ys

@ �y

����
�y��s� �z�
ÿ1� 2

p
Bi 2l
Pel

�z

D
� � � � � Pes

StBis

d�s

d �z
, �27�

from Eqs. (15) and (23).

Then again, when seeking solutions in the limit of
large Peclet numbers, we need to express the math-
ematical problem with derivatives of O(1). In the same

way, as in Section 2, we may introduce new variables
as Z � Bi 2s �z=Pes, Y � Bis �y and S � Bis �s: The asympto-
tic problem in the thin solid shell is then given by

@ys

@Z
� @ 2ys

@Y 2
, Zr0, 0RYRS�Z� �28�

@ys

@Y

����
Y�0
� Bisys�Z, 0�, �29�

ys�Z, S� � 1, �30�

@ys

@Y

����
Y�S�Z�

ÿ1� 2

p
Bi 2l
Bi 2s

Pes

Pel

Z

D
� � � � � 1

St

dS

dZ
, as

Z40�

�31�

where the ratios Pel=Pes and Bil=Bis are of O(1).
In order to determine the temperature ®eld in the

region close to the point of initial solidi®cation, we
assume a Taylor expansion of ys for small Z and Y,
i.e.

ys�Z, Y� � y0 � A1Z� A2Y� B1Z
2 � B2ZY

� B3Y
2 � C1Z

3 � C2Z
2Y� C3ZY

2

� C4Y
3 � H:O:T: �32�

By inserting Eq. (32) into Eqs. (28)±(30), a straightfor-
ward identi®cation gives

A1 � B2 � 2B3 � 6C4 � � � �

A2 � y0 � 1 � � � �

B1 � C2 � C3 � � � �

A1Z� S� B1Z
2 � B2ZS� B3S

2 � � � � � 0 �33�

To commence the analysis, we know that in the case
of no superheat in the melt, the initial growth of the
solid phase is linear [3]. It is therefore reasonable to

assume that S � kZq � � � � as Z40�, where k is some
constant and qr1: The only proper choice ful®lling
both Eqs. (31) and (33) is q � 2, giving the solution

ys � 1� Yÿ St

pD
Bi 2l
Bi 2s

Pes

Pel

ÿ
Z 2 � Z 2Y� ZY 2

�
� H:O:T

�34�
and

S � St

pD
Bi 2l
Bi 2s

Pes

Pel

Z 2 �O�Z 3 � as Z40�: �35�

This validates the assumption of weakly inclined solid-
i®cation fronts in the vicinity of the point of initial sol-
idi®cation.

Let us now investigate if the curvature of the solidi-
fying interface e�ects the fusion temperature. We
know that this e�ect is negligible as long as d 2 �s=d �x 2 �
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a�Tf ÿ T0�=G: Using Eq. (35) yields an additional
restriction for the superheat, namely

D� 2St

p
Bi 2l Bis
PelPes

G
a�Tf ÿ T0 � , �36�

where G=�a�Tf ÿ T0�� is typically very much smaller
than unity. This is thereby a far weaker restriction
than that for consistency of Eqs. (13) and (14), which

is

Bil
Pel

� 1������
Re
p ;

�
Bil
Pel

� 2

� 1;

����
2

p

r
Bil
Pel

� D� 1: �37�

Consequently, the curvature e�ect is negligible within

the given parameter interval of this analysis.

4. Conclusions

In this paper, we analyse the two-dimensional initial
solidi®cation problem of a superheated pure liquid

metal, appearing in connection with the continuous
strip casting process. Analytical solutions are found in
the limit of large Peclet numbers. It is shown that the

distance to the point of initial solidi®cation depends
on the Peclet number, the Biot number and the super-
heat. Furthermore, the initial growth of the solid

phase is found to have a quadratic dependence of the
distance from the point of initial solidi®cation. This is
to be compared with the case of no superheat where
the initial growth is linear [3].

The results of this paper are intended to give a ®rst-
order approximation to the initial solidi®cation process
that can be used as an independent check of numerical

calculations. This would also be a good approximation
for the case of low-alloyed metals for which the mushy

two-phase zone can be neglected. An interesting exten-
sion to this work is to consider the e�ect of solute con-

centrations. This should decrease the fusion
temperature and thereby postpone the point of initial
solidi®cation.
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